精品久久久久久久久久_欧美香蕉人人人人人人爱_91精品国产免费久久久久久青草_国产亚洲欧美日韩在线观看一区二区

每日經濟新聞
要聞

每經網首頁 > 要聞 > 正文

“AI界春晚”2024北京智源大會:新主角、共識和分歧|大模界

每日經濟新聞 2024-06-15 16:56:29

◎在今年的“AI界春晚”上,國產大模型成為主角。

◎“零一萬物堅決做to C(面向個人),不做‘賠錢的to B(面向企業)’,找到能賺錢的to B,我們就做,不賺錢就不做。”李開復表示。

◎圍繞“Scaling Law”(規模定律)的討論開始走向一些分歧,對于Scaling Law會否失效、何時失效,明星大模型公司的掌舵者們,開始提出不同的判斷。

每經記者|可楊    每經編輯|張海妮    

結束圓桌對談后,人墻迅速圍攏,以月之暗面CEO楊植麟為核心,把會場前排的空白處填補得嚴嚴實實,人們舉著手機,寄望于伸出的胳膊能碰巧掃到楊植麟的微信。楊植麟至少被現場參會人員簇擁圍堵了三次,才在工作人員的協助下成功離開會場。

2024年6月14日—15日,備受矚目的AI領域盛會“2024北京智源大會”在中關村展示中心盛大召開。《每日經濟新聞》記者現場注意到,這場被譽為“AI界春晚”的大會,在近年來大模型浪潮的推動下,呈現出愈發濃厚的氛圍,國產大模型明星公司也成為參會者關注的焦點。

不同于上屆以國外技術人員、從業者為主,圍繞技術探索展開的大會,今年國產大模型公司成為主論壇的重頭戲——百度、月之暗面、智譜AI、零一萬物、面壁智能等大模型公司成為論壇主角。與此同時,隨著大模型從技術競速逐步邁向落地應用,一些新的變化正在發生。

圖片來源:主辦方提供 

新主角:國產大模型站在舞臺中央

在今年的“AI界春晚”上,國產大模型成為主角。

“進入到2023年,大模型從研究機構的科研成果開始向產業界逐步發展,我們也看到,百花齊放,有越來越多的大模型在過去的這一年發布。”智源研究院院長王仲遠在發言中提到。

王仲遠認為,以2023年為界,人工智能基本上可以分為兩個大的階段:2023年之前都屬于弱人工智能時代,即人工智能的模型是針對特定的場景、特定的任務,需要去收集特定的數據,訓練特定的模型。比如說,戰勝人類世界圍棋冠軍的AlphaGO在圍棋上表現得非常好,但是卻無法用來直接解決醫療問題,雖然方法可以借鑒,但是針對不同的場景任務都需要做數據和模型重新的收集和訓練。進入2023年,隨著大模型的發展,人工智能逐步進入通用人工智能時代,而通用人工智能最大的特點就是它的規模非常大,模型具備涌現性,同時能夠跨領域的通用性。

2023年和2024年的北京智源大會,如同兩個對比鮮明的畫面,尤其是在大模型技術的發展和應用上,兩屆大會的嘉賓構成和議題變化,成為大模型時代飛速發展的注腳。

2024年的智源大會,嘉賓陣容發生了顯著的變化。更引人矚目的是國內大模型公司,如百度、月之暗面、零一萬物、智譜AI、面壁智能等大模型明星公司的CEO(首席執行官)與CTO(首席技術官),以及來自國內頂尖院校和研究機構的代表。此次會議更加聚焦于人工智能關鍵技術路徑和應用場景,從理論探討向實際應用邁進了一大步。

在2023年的大會上,ChatGPT剛剛推出半年,國內大模型啟動跟進,“百模大戰”剛剛迎來開端。彼時,大會的主角是來自全球的頂尖學者和科技巨擘,國內則更多以學界為主。在彼時的主論壇環節,兩組對談嘉賓分別是:Meta首席AI科學家、紐約大學教授楊立昆與清華大學計算機系教授朱軍;未來生命研究所創始人Max Tegmark與清華大學智能產業研究院(AIR)院長張亞勤,對談內容圍繞AI技術層面的探索展開。

變化已經非常明顯:“百模大戰”愈演愈烈,折射出國內大模型市場的快速崛起和自主創新能力的顯著提升。

隨著大模型由科研走向產業,人們對AGI(人工通用智能)有了更多想象,王仲遠也提到,當多模態大模型能夠理解和感知、決策這個世界的時候,它就有可能進入到物理世界。如果進入到宏觀世界跟硬件結合,這就是具身大模型的發展方向。如果它進入到了微觀世界,去理解和生成生命分子,那么這就是AI For Science。無論是具身模型還是AI For Science亦或是多模型模態,都會促進整個世界模型的發展,最終推動人工智能技術向AGI方向發展。 

一個共識:落地,落地,落地

盡管面臨挑戰,但技術的普及與落地已經顯著加速,預示著人工智能正邁向一個全新的發展階段。一個重要的共識是,在將AGI的理想帶入現實世界的路上,落地應用是重要的必答題。

“零一萬物堅決做to C(面向個人),不做‘賠錢的to B(面向企業)’,找到能賺錢的to B,我們就做,不賺錢就不做。”李開復表示。

圖片來源:主辦方提供 

對于大模型的落地應用,李開復認為,在中國to C短期更有機會,國外兩者都有機會。在to C端,大模型就如同互聯網時代或PC時代的新技術、新平臺,將會帶來新應用,這是巨大的機會。他判斷,AI時代,第一個階段突圍的應該是生產力工具;第二個階段可能會是娛樂、音樂、游戲;第三個階段可能會是搜索;再下一個階段可能會是電商;然后可能會有社交、短視頻、O2O,這是不變的定律。

張亞勤則認為,再分層來看,目前真正賺錢的是to B,是在硬件、在芯片、在基礎設施層,這個是目前已經發生的,但是從應用來講,是先to C再to B。對于當前的AI分層,張亞勤將其劃分為信息智能、物理智能(也稱為具身智能)以及生物智能。在具身智能階段,面向企業的應用可能會發展得更為迅速。而到生物智能階段,情況可能恰好相反,面向個人的應用會超過面向企業的應用。各個領域的情況可能不盡相同,但總體來看,面向企業和面向個人的應用,包括開源模型、商業閉源模型、基礎大模型、垂直行業大模型以及邊緣模型,都會存在。

而對于B端的落地應用,李開復也談到,to B是大模型帶來更大的價值,而且應該更快實現,但是可惜的是在to B這個領域面臨幾個巨大的挑戰。

一方面大公司、傳統公司看不懂大模型技術,不敢采取巨大顛覆式的東西。

與此同時,對企業來說這一年帶來的最大的價值是降本,而不是創造價值。而降本說實在的就是取代人類的工作。大公司會有很多高管或者中層管理不愿意做這個事情,因為做了這個,可能團隊就要被砍掉了,他在公司的政治資本就沒有了,他的權力就變小了,甚至他自己的工作都沒有了,所以大公司有時CEO是很想做,但是下面的人會有阻力,這些理由造成to B理論上應該馬上可以落地的,但實際上沒有那么快。

另一個在中國比較嚴重的問題是,很多大公司沒有認識到軟件的價值,不愿意為軟件付費,而且有這么多大模型公司來競標,結果價格越競越低,做到最后是做一單賠一單,都沒有利潤。“我們在AI1.0時代看到這個現象,現在很不幸在AI2.0時代(它)又重現了。”

百度CTO王海峰的觀點是,在人類歷史上,每次工業革命的核心技術,不論是機械、電氣還是信息技術,均具備一些共同特性:首先,核心技術具有強烈的通用性,能夠廣泛應用于各個領域。其次,當這些技術具備了標準化、模塊化和自動化的工業大生產特征時,這些技術就會進入到工業大生產階段,從而更快地改變人們的生產生活方式,并為人們帶來巨大的價值。當前,人工智能基于深度學習和大模型工程平臺已經具備了極強的通用性,以及良好的標準化、自動化和模塊化特性。因此,王海峰認為,深度學習和大模型工程平臺的結合,正在推動人工智能步入工業大生產階段,從而加速通用人工智能的來臨。 

一個分歧:是否仍堅信Scaling Law

圍繞“Scaling Law”(規模定律)的討論開始出現分歧,對于Scaling Law會否失效、何時失效,明星大模型公司的掌舵者們,也給出了不同的判斷。

楊植麟依舊是堅定的Scaling Law信仰派。“Scaling Law沒有本質的問題,而且接下來3~4個數量級,我覺得是非常確定的事情。這里面更重要的問題是你怎么能夠很高效地去scale(擴展)?”

楊植麟指出,如今僅僅像現在這樣,依賴一些web text(網頁文本)進行scale,未必是正確的方向。因為在這個過程中可能會面臨諸多挑戰,如推理能力等問題,未必能夠得到有效解決。因此關鍵在于如何界定Scaling Law以及其實質是什么。如果僅按照現有方法,進行next token prediction(下一標記預測),然后在此基礎上擴展多個數量級,用當前的數據分布,其上限是顯而易見的。

然而,Scaling Law本身并不受此限制,其核心觀點是,只要具備更多的算力和數據模型,擴大參數規模,就能持續產生更多的智能。但在此過程中,它并沒有定義模型的具體形態,例如模型的模態數量、數據的特性和來源等。因此,楊植麟認為Scaling law是一種會持續演進的第一性原理(first principle)。只是在這一過程中,scale的方法可能發生很大變化。

百川智能CEO王小川則認為,Scaling Law到目前沒有看到邊界,依舊在持續地發揮作用,“我們看到美國埃隆·馬斯克號稱要買30萬片B100、B200來做,所以美國確實在這方面的認真程度,甚至包括投入程度是遠高于中國的”。

在他看來,我們需要在Scaling Law之外,去尋找范式上新的轉化,而在Scaling Law上,很明確,就是在美國后面跟進。從戰略上看,在Scaling Law之外都還存在范式的變化,走出這樣的體系,才有機會走向AGI,才有機會跟最前沿的技術較量。

智譜AI CEO張鵬與面壁智能CEO李大海,則持相對謹慎樂觀的態度。張鵬認為,包括Scaling Law在內,目前為止人類認識到的所有的規律都有可能有被推翻的一天,只是看它的有效期是多長。但目前為止還沒有看到Scaling Law會失效的預兆,未來的相當一段時間之內它仍然會有效。“隨著大家對規律的認知越來越深,規律的本質越來越(被)揭示,所以掌握本質就能掌握通往未來的鑰匙。基于現在大家對本質認識的深淺,至少在我們看來,仍然還會起效,會是未來我們主力想要推進的方向”。張鵬說。

李大海同樣表示,Scaling Law是一個經驗公式,是行業對大模型這樣一個復雜系統觀察以后的經驗總結,隨著訓練過程中實驗越來越多、認知越來越清晰,會有更細顆粒度的認知。比如模型訓練中的訓練方法本身對于Scaling Law、對于智能的影響是比較顯著的。在將模型參數控制在一定規模后,這種顯著影響變得尤為重要,在確保終端芯片能夠支持該規模模型的同時,實現優質智能,數據質量和訓練方法等因素亦至關重要。

毫無疑問的是,Scaling Law在當前階段仍然是驅動大模型發展的重要理論基礎,但其在未來的應用和擴展方式可能會面臨更多挑戰和變化。隨著技術的進步和對規律本質認識的深化,行業也可能需要進一步優化模型訓練方法,才能應對智能推理等更高級別的挑戰。

如需轉載請與《每日經濟新聞》報社聯系。
未經《每日經濟新聞》報社授權,嚴禁轉載或鏡像,違者必究。

讀者熱線:4008890008

特別提醒:如果我們使用了您的圖片,請作者與本站聯系索取稿酬。如您不希望作品出現在本站,可聯系我們要求撤下您的作品。

結束圓桌對談后,人墻迅速圍攏,以月之暗面CEO楊植麟為核心,把會場前排的空白處填補得嚴嚴實實,人們舉著手機,寄望于伸出的胳膊能碰巧掃到楊植麟的微信。楊植麟至少被現場參會人員簇擁圍堵了三次,才在工作人員的協助下成功離開會場。 2024年6月14日—15日,備受矚目的AI領域盛會“2024北京智源大會”在中關村展示中心盛大召開。《每日經濟新聞》記者現場注意到,這場被譽為“AI界春晚”的大會,在近年來大模型浪潮的推動下,呈現出愈發濃厚的氛圍,國產大模型明星公司也成為參會者關注的焦點。 不同于上屆以國外技術人員、從業者為主,圍繞技術探索展開的大會,今年國產大模型公司成為主論壇的重頭戲——百度、月之暗面、智譜AI、零一萬物、面壁智能等大模型公司成為論壇主角。與此同時,隨著大模型從技術競速逐步邁向落地應用,一些新的變化正在發生。 圖片來源:主辦方提供 新主角:國產大模型站在舞臺中央 在今年的“AI界春晚”上,國產大模型成為主角。 “進入到2023年,大模型從研究機構的科研成果開始向產業界逐步發展,我們也看到,百花齊放,有越來越多的大模型在過去的這一年發布。”智源研究院院長王仲遠在發言中提到。 王仲遠認為,以2023年為界,人工智能基本上可以分為兩個大的階段:2023年之前都屬于弱人工智能時代,即人工智能的模型是針對特定的場景、特定的任務,需要去收集特定的數據,訓練特定的模型。比如說,戰勝人類世界圍棋冠軍的AlphaGO在圍棋上表現得非常好,但是卻無法用來直接解決醫療問題,雖然方法可以借鑒,但是針對不同的場景任務都需要做數據和模型重新的收集和訓練。進入2023年,隨著大模型的發展,人工智能逐步進入通用人工智能時代,而通用人工智能最大的特點就是它的規模非常大,模型具備涌現性,同時能夠跨領域的通用性。 2023年和2024年的北京智源大會,如同兩個對比鮮明的畫面,尤其是在大模型技術的發展和應用上,兩屆大會的嘉賓構成和議題變化,成為大模型時代飛速發展的注腳。 2024年的智源大會,嘉賓陣容發生了顯著的變化。更引人矚目的是國內大模型公司,如百度、月之暗面、零一萬物、智譜AI、面壁智能等大模型明星公司的CEO(首席執行官)與CTO(首席技術官),以及來自國內頂尖院校和研究機構的代表。此次會議更加聚焦于人工智能關鍵技術路徑和應用場景,從理論探討向實際應用邁進了一大步。 在2023年的大會上,ChatGPT剛剛推出半年,國內大模型啟動跟進,“百模大戰”剛剛迎來開端。彼時,大會的主角是來自全球的頂尖學者和科技巨擘,國內則更多以學界為主。在彼時的主論壇環節,兩組對談嘉賓分別是:Meta首席AI科學家、紐約大學教授楊立昆與清華大學計算機系教授朱軍;未來生命研究所創始人Max Tegmark與清華大學智能產業研究院(AIR)院長張亞勤,對談內容圍繞AI技術層面的探索展開。 變化已經非常明顯:“百模大戰”愈演愈烈,折射出國內大模型市場的快速崛起和自主創新能力的顯著提升。 隨著大模型由科研走向產業,人們對AGI(人工通用智能)有了更多想象,王仲遠也提到,當多模態大模型能夠理解和感知、決策這個世界的時候,它就有可能進入到物理世界。如果進入到宏觀世界跟硬件結合,這就是具身大模型的發展方向。如果它進入到了微觀世界,去理解和生成生命分子,那么這就是AI For Science。無論是具身模型還是AI For Science亦或是多模型模態,都會促進整個世界模型的發展,最終推動人工智能技術向AGI方向發展。 一個共識:落地,落地,落地 盡管面臨挑戰,但技術的普及與落地已經顯著加速,預示著人工智能正邁向一個全新的發展階段。一個重要的共識是,在將AGI的理想帶入現實世界的路上,落地應用是重要的必答題。 “零一萬物堅決做to C(面向個人),不做‘賠錢的to B(面向企業)’,找到能賺錢的to B,我們就做,不賺錢就不做。”李開復表示。 圖片來源:主辦方提供 對于大模型的落地應用,李開復認為,在中國to C短期更有機會,國外兩者都有機會。在to C端,大模型就如同互聯網時代或PC時代的新技術、新平臺,將會帶來新應用,這是巨大的機會。他判斷,AI時代,第一個階段突圍的應該是生產力工具;第二個階段可能會是娛樂、音樂、游戲;第三個階段可能會是搜索;再下一個階段可能會是電商;然后可能會有社交、短視頻、O2O,這是不變的定律。 張亞勤則認為,再分層來看,目前真正賺錢的是to B,是在硬件、在芯片、在基礎設施層,這個是目前已經發生的,但是從應用來講,是先to C再to B。對于當前的AI分層,張亞勤將其劃分為信息智能、物理智能(也稱為具身智能)以及生物智能。在具身智能階段,面向企業的應用可能會發展得更為迅速。而到生物智能階段,情況可能恰好相反,面向個人的應用會超過面向企業的應用。各個領域的情況可能不盡相同,但總體來看,面向企業和面向個人的應用,包括開源模型、商業閉源模型、基礎大模型、垂直行業大模型以及邊緣模型,都會存在。 而對于B端的落地應用,李開復也談到,to B是大模型帶來更大的價值,而且應該更快實現,但是可惜的是在to B這個領域面臨幾個巨大的挑戰。 一方面大公司、傳統公司看不懂大模型技術,不敢采取巨大顛覆式的東西。 與此同時,對企業來說這一年帶來的最大的價值是降本,而不是創造價值。而降本說實在的就是取代人類的工作。大公司會有很多高管或者中層管理不愿意做這個事情,因為做了這個,可能團隊就要被砍掉了,他在公司的政治資本就沒有了,他的權力就變小了,甚至他自己的工作都沒有了,所以大公司有時CEO是很想做,但是下面的人會有阻力,這些理由造成to B理論上應該馬上可以落地的,但實際上沒有那么快。 另一個在中國比較嚴重的問題是,很多大公司沒有認識到軟件的價值,不愿意為軟件付費,而且有這么多大模型公司來競標,結果價格越競越低,做到最后是做一單賠一單,都沒有利潤。“我們在AI1.0時代看到這個現象,現在很不幸在AI2.0時代(它)又重現了。” 百度CTO王海峰的觀點是,在人類歷史上,每次工業革命的核心技術,不論是機械、電氣還是信息技術,均具備一些共同特性:首先,核心技術具有強烈的通用性,能夠廣泛應用于各個領域。其次,當這些技術具備了標準化、模塊化和自動化的工業大生產特征時,這些技術就會進入到工業大生產階段,從而更快地改變人們的生產生活方式,并為人們帶來巨大的價值。當前,人工智能基于深度學習和大模型工程平臺已經具備了極強的通用性,以及良好的標準化、自動化和模塊化特性。因此,王海峰認為,深度學習和大模型工程平臺的結合,正在推動人工智能步入工業大生產階段,從而加速通用人工智能的來臨。 一個分歧:是否仍堅信Scaling Law 圍繞“Scaling Law”(規模定律)的討論開始出現分歧,對于Scaling Law會否失效、何時失效,明星大模型公司的掌舵者們,也給出了不同的判斷。 楊植麟依舊是堅定的Scaling Law信仰派。“Scaling Law沒有本質的問題,而且接下來3~4個數量級,我覺得是非常確定的事情。這里面更重要的問題是你怎么能夠很高效地去scale(擴展)?” 楊植麟指出,如今僅僅像現在這樣,依賴一些web text(網頁文本)進行scale,未必是正確的方向。因為在這個過程中可能會面臨諸多挑戰,如推理能力等問題,未必能夠得到有效解決。因此關鍵在于如何界定Scaling Law以及其實質是什么。如果僅按照現有方法,進行next token prediction(下一標記預測),然后在此基礎上擴展多個數量級,用當前的數據分布,其上限是顯而易見的。 然而,Scaling Law本身并不受此限制,其核心觀點是,只要具備更多的算力和數據模型,擴大參數規模,就能持續產生更多的智能。但在此過程中,它并沒有定義模型的具體形態,例如模型的模態數量、數據的特性和來源等。因此,楊植麟認為Scaling law是一種會持續演進的第一性原理(first principle)。只是在這一過程中,scale的方法可能發生很大變化。 百川智能CEO王小川則認為,Scaling Law到目前沒有看到邊界,依舊在持續地發揮作用,“我們看到美國埃隆·馬斯克號稱要買30萬片B100、B200來做,所以美國確實在這方面的認真程度,甚至包括投入程度是遠高于中國的”。 在他看來,我們需要在Scaling Law之外,去尋找范式上新的轉化,而在Scaling Law上,很明確,就是在美國后面跟進。從戰略上看,在Scaling Law之外都還存在范式的變化,走出這樣的體系,才有機會走向AGI,才有機會跟最前沿的技術較量。 智譜AI CEO張鵬與面壁智能CEO李大海,則持相對謹慎樂觀的態度。張鵬認為,包括Scaling Law在內,目前為止人類認識到的所有的規律都有可能有被推翻的一天,只是看它的有效期是多長。但目前為止還沒有看到Scaling Law會失效的預兆,未來的相當一段時間之內它仍然會有效。“隨著大家對規律的認知越來越深,規律的本質越來越(被)揭示,所以掌握本質就能掌握通往未來的鑰匙。基于現在大家對本質認識的深淺,至少在我們看來,仍然還會起效,會是未來我們主力想要推進的方向”。張鵬說。 李大海同樣表示,Scaling Law是一個經驗公式,是行業對大模型這樣一個復雜系統觀察以后的經驗總結,隨著訓練過程中實驗越來越多、認知越來越清晰,會有更細顆粒度的認知。比如模型訓練中的訓練方法本身對于Scaling Law、對于智能的影響是比較顯著的。在將模型參數控制在一定規模后,這種顯著影響變得尤為重要,在確保終端芯片能夠支持該規模模型的同時,實現優質智能,數據質量和訓練方法等因素亦至關重要。 毫無疑問的是,Scaling Law在當前階段仍然是驅動大模型發展的重要理論基礎,但其在未來的應用和擴展方式可能會面臨更多挑戰和變化。隨著技術的進步和對規律本質認識的深化,行業也可能需要進一步優化模型訓練方法,才能應對智能推理等更高級別的挑戰。
模型 大模型 北京市 Ai

歡迎關注每日經濟新聞APP

每經經濟新聞官方APP

0

0

精品久久久久久久久久_欧美香蕉人人人人人人爱_91精品国产免费久久久久久青草_国产亚洲欧美日韩在线观看一区二区

      成人av在线影院| 亚洲一区免费视频| 色婷婷av久久久久久久| 欧美精品一区二区三区在线播放 | 国产一区 二区| 国产三级欧美三级| 日本韩国欧美一区二区三区| 国产日韩精品一区二区三区| 人人爽香蕉精品| 久久精品人人做人人爽人人| 在线视频国产一区| 中文字幕在线观看一区二区| 国产一区二区三区黄视频| 中文字幕亚洲不卡| 日韩亚洲欧美在线| 无码av免费一区二区三区试看| av成人动漫在线观看| 偷拍亚洲欧洲综合| 中文av一区特黄| 国产精品一区二区男女羞羞无遮挡| 亚洲色图制服诱惑| 精品日产卡一卡二卡麻豆| 无吗不卡中文字幕| 亚洲国产精品成人综合| 欧美日本一区二区在线观看| 一区二区三区国产豹纹内裤在线| a在线播放不卡| 色天使色偷偷av一区二区 | 国产色产综合色产在线视频 | 国产精品国产馆在线真实露脸| 欧美日免费三级在线| 综合婷婷亚洲小说| av亚洲精华国产精华| 色国产综合视频| 亚洲女同女同女同女同女同69| 成人h精品动漫一区二区三区| 色综合天天综合在线视频| 中文字幕一区二| 99久久国产综合精品色伊 | 另类人妖一区二区av| 亚洲天堂a在线| 国产午夜精品一区二区| 国产一区二区调教| 色综合中文综合网| 国产资源在线一区| 亚洲一区在线电影| 一区视频在线播放| 99久久免费国产| 欧美精品一二三四| 青青草97国产精品免费观看无弹窗版| 国产精品久久久久久久蜜臀| 亚洲精品一区二区三区香蕉| 极品美女销魂一区二区三区 | 国产在线一区观看| 五月天欧美精品| 亚洲激情综合网| 日本一区二区动态图| 欧美成人一级视频| 国产精品一二三| 欧美性欧美巨大黑白大战| 婷婷成人激情在线网| 亚洲色图在线看| 国产精品灌醉下药二区| 91麻豆视频网站| 日韩免费高清视频| 国产成人在线免费| 欧美日韩国产成人在线91| 日本午夜精品一区二区三区电影| 一区二区免费在线播放| 亚洲黄色小说网站| 日韩美女啊v在线免费观看| 中文字幕的久久| 久久精品欧美日韩精品| 久久久久久久久99精品| www.66久久| 日韩欧美卡一卡二| 成人一区二区视频| 日韩三级伦理片妻子的秘密按摩| 国产一区二区不卡老阿姨| 欧美午夜免费电影| 久草这里只有精品视频| 欧美影片第一页| 美女视频网站久久| 欧美在线观看视频一区二区| 麻豆免费看一区二区三区| 色哟哟一区二区在线观看| 视频一区视频二区中文| 五月婷婷激情综合| 免费在线观看视频一区| 日本高清视频一区二区| 免费观看在线综合| 欧美怡红院视频| 国内一区二区在线| 8x福利精品第一导航| 国产成人亚洲综合a∨婷婷 | 丁香亚洲综合激情啪啪综合| 日韩一区二区三| 成人激情校园春色| 欧美精品一区二区三区一线天视频| 成人av第一页| 久久久影院官网| 国产亚洲成aⅴ人片在线观看| 亚洲国产精品高清| 中文字幕在线一区免费| 亚洲激情网站免费观看| 亚洲一区二区三区四区在线免费观看 | 欧美日韩在线综合| 国产精品羞羞答答xxdd| 欧美成人伊人久久综合网| 91麻豆免费观看| 国产精品你懂的| 亚洲欧美另类久久久精品2019| 亚洲国产综合在线| 色屁屁一区二区| 国产在线不卡一卡二卡三卡四卡| 91麻豆精品国产自产在线| 99久久婷婷国产精品综合| 日本一区二区三区久久久久久久久不 | 91浏览器打开| 1区2区3区欧美| 亚洲午夜一区二区| 久久成人免费网站| 91精品国产综合久久福利| 99国产精品久久久| √…a在线天堂一区| 亚洲综合免费观看高清完整版| 日韩av网站免费在线| 欧美人牲a欧美精品| 99久久免费精品| 亚洲色图制服丝袜| 午夜精品一区二区三区免费视频 | 欧美精品成人一区二区三区四区| 国产91精品一区二区麻豆网站| 久久精品视频一区二区| 1024精品合集| 日本午夜一本久久久综合| 欧美一区二区成人| 国产人伦精品一区二区| 亚洲国产日韩一级| 欧美精品黑人性xxxx| 久久久久久一二三区| 亚洲精品成人精品456| 日本二三区不卡| 丰满少妇在线播放bd日韩电影| 国产精品麻豆一区二区| 五月婷婷久久丁香| 成人一区二区三区在线观看| 中文字幕在线观看一区二区| 亚洲成av人在线观看| 成人午夜碰碰视频| 亚洲日本欧美天堂| 欧美三级电影一区| 久久精品日产第一区二区三区高清版| 亚洲综合在线免费观看| 欧美日韩久久不卡| 国产欧美日韩在线视频| 三级精品在线观看| 精品蜜桃在线看| 亚洲日本成人在线观看| 国内成人自拍视频| 国产精品亲子乱子伦xxxx裸| 天天爽夜夜爽夜夜爽精品视频| 成人精品一区二区三区四区| 亚洲另类春色校园小说| 欧美日韩www| 国产精品人妖ts系列视频| 麻豆成人91精品二区三区| 国产亚洲欧洲997久久综合| 亚洲一区二区在线观看视频| 成人免费看视频| 亚洲尤物在线视频观看| 欧美一级专区免费大片| 亚洲嫩草精品久久| 夫妻av一区二区| 亚洲一区在线视频| 日韩精品一区二区三区视频在线观看 | 国产精品久久久久久久久免费丝袜| 美女性感视频久久| 国产精品美女久久久久久久| 日本韩国一区二区三区视频| 国产欧美中文在线| 久久er精品视频| 亚洲视频免费在线| 日韩一区二区影院| 亚洲一二三专区| 91老司机福利 在线| 美腿丝袜亚洲一区| 日韩一区在线看| 欧美一级高清片在线观看| 一区二区三区四区在线播放 | 亚洲天堂2014| 日韩欧美三级在线| 亚洲成av人影院| 国产亚洲制服色| 国产一区二区三区精品欧美日韩一区二区三区 | 亚洲在线中文字幕| 久久久久青草大香线综合精品| 老司机精品视频一区二区三区| 国产精品国产三级国产普通话蜜臀 | 图片区小说区区亚洲影院|